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In order to investigate the stability of infinitely long fully developed salt fingers Stern 
(1975) has proposed a model in which the basic configuration is independent of the 
vertical and is sinusoidal in the horizontal direction, with constant background 
gradients of temperature and salinity. The present study deals with a model of finite 
vertical extent where 7 ,  the ratio of the diffusivities of salt and heat, is small, and 
where the constant background salt gradient is replaced by a salt difference between 
the reservoirs above and below a salt-finger region of finite depth. Steady-state 
solutions in two and three dimensions are obtained for the zero-order (7 = 0) state 
in which rising (sinking) fingers have the salinity of the lower (upper) reservoir. For 
two-dimensional fingers the horizontal scale corresponding to maximum buoyancy 
flux turns out to be 1.7 times the buoyancy-layer scale associated with the 
background stable temperature gradient. Heat, salt and buoyancy fluxes are 
calculated. A boundary-layer analysis is given for the (salt) diffusive correction to 
the zero-order solution. The mme set of calculations is carried out for salt fingers in 
a Hele-Shew cell. An assessment of Schmitt’s (19794 model of a finger zone of fmite 
depth shows that the parametric restrictions required by the model cannot be 
satisfied when Stern’s idealization is used for the final state. The present model 
appears to be preferable for constructing a Schmitt-like theory for 7 4 1. 

1. Introduction 
In double-diffusive convection with the less diffusible substance destabilizing and the 
more diffusible one stabilizing - e.g. hot and salty above, cold and fresh below - one 
generally obtains a series of layers of nearly homogeneous fluid, separated by zones 
occupied by salt fingers. A model for such developed finger zones was given by Stern 
(1975), based on a solution of the equations that is periodic in the horizontal (2) and 
independent of the vertical (z), except for ‘background’ uniform gradients of salt (8)  

and temperature (T) .  The relevant equations are 

wt+P,-g(aT-P~) = vw,,, (la) 

(1 b)  

(1 4 

Here and flz are constants, and T and s represent z-independent deviations from 
these background constant gradients. The vertical velocity w is also independent of 
z, and the horizontal velocity components are zero. These equations have solutions 

-k w q  = K~ Tzz, 

St + W& = KS Szz. 
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in which p = 0 and the other variables are multiples (denoted by the same letters) 
of sin (kx )  exp (At)  ; these multiples satisfy the equations 

hw-g(aT-ps) = -kkPvw, (2a) 

hT+wE = - k k 2 K T T ,  (2 b)  

AS + wRZ = - kZKs S, ( 2 4  

which may be regarded as determining h (through the condition of existence of a 
non-zero solution), or as fixing a relation among the other parameters if h is given. 

If we introduce the parameters CT = V / K ~  and 7 = K , / K ~ ,  and set h = KT k2A, 
R ,  = agq/(k4vtcT),  R, = p g R z / ( k 4 v ~ T ) ,  the condition for existence of a non-zero 

(3 a) 

solution is 
( A  + I )  ( A  + 7 )  ( " >  + 1 - ( A  + I ) R, + ( A  + 7 )  RT = 0. 

In  particular there is a steady solution (A = 0) if 

R, = ~ ( R T +  1). (3 b)  

This condition may be used to calculate k if the gradients are specified, and actually 
gives a reasonable estimate of the horizontal size of salt fingers. It should be noted 
that although these calculations involve only very simple linear equations, this is not 
a linearized model but an exact solution of the Boussinesq equations. However, it 
has the somewhat disturbing feature that if k is smaller than the value for a steady 
solution just mentioned, then there is also an exact solution, and it grows 
exponentially in time. Furthermore, if attention is - rather arbitrarily - restricted to 
the steady case, there is not just one solution : the overall amplitude remains entirely 
arbitrary. Various not altogether conclusive discussions referring to stability 
considerations, etc. have been put forward to try to relate this attractive and simple 
solution more closely to real salt-finger zones. 

Stern's solution, or some modification of it, may be appropriate in the middle of 
the salt-finger zone. However, since the height of the finger zone is observed to be 
limited to a scale much less than the depth of the fluid, a more realistic dynamical 
model must include dependence on the vertical coordinate. This realization induced 
Stern (1969) to look into the stability of an array of infinitely long fingers. His 
conclusion, subsequently confirmed by a more rigorous analysis by Holyer (1984), 
is that a collective instability can occur, i.e. that the system can be unstable to a 
disturbance with a vertical wavelength much larger than the finger width when D, 
the ratio of the buoyancy flux to v(aTz-pBsz), is of order unity. In  a later paper 
Stern (1976) assumed a slightly supercritical value of D, together with statistical 
assumptions about the isotropy of a quasi-laminar regime of salt fingers and the 
assumption that the buoyancy flux is maximum, to obtain the result that the ratio 
of convective heat to salt flux is 1/4. Concomitant parts of the theory are that the 
mean salt gradient in the finger zone vanishes and that the depth of the fingers is 
finite. 

An altogether different approach to the finite-depth problem was adopted by 
Schmitt (1979a), who put aside any consideration of collective instability and focused 
on the time-dependent solutions of Stern's idealized model for infinitely long fingers. 
Schmitt argued that fingers would be generated in the transition regions and 
penetrate into the finger zone where they have the characteristic features of fingers 
with maximum growth rate. He then assumed that the wavelength of the fingers 
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remains constant, that the mean temperature gradient is unaltered, and that the 
fingers evolve to the equilibrium state described by ( 3 b ) .  A necessary part of that 
evolution is a decrease in the mean salinity gradient from the value associated with 
the basic state. The reduced gradient can be calculated from the initial gradients, 
the wavelength of maximum growth rate, and the observed depth of the finger zone. 
The theoretically deduced flux ratios agree rather well with the values measured in 
experiments. 

In  addressing the problem of fingers of finite depth both Stern and Schmitt have 
started with the infinitely deep, constant-gradient model. To this they add (in their 
different ways) other considerations which serve to tie down the undetermined 
quantities in Stern’s idealization. We shall present here a different idealized model, 
which can play a role analogous to that of Stern’s in more extended theoretical 
studies. Our idealization is directed to the finite-depth case (though this fact is 
somewhat concealed in the zero-order model) and we believe it usually gives a 
description that is closer to the physics of real salt-finger flows than Stern’s 
idealization does. Our analysis is based on two observed features of salt fingers. The 
first is that salt fingers that evolve from an initial configuration of two layers are 
driven by a destabilizing salt difference between the two reservoirs rather than a mean 
gradient of salt. Therefore, only a finite amount of potential energy is available 
(whereas a uniform salinity gradient in a vertically infinite system has infinite 
potential energy). The second is that the fluid ejected into a reservoir by a finger often 
has nearly the salinity anomaly of the other reservoir, i.e. salt diffusion is incapable 
of smoothing out the salinity anomaly in the time that it takes the fluid to cross the 
salt-finger zone. The latter phenomenon, observed in both experiments and the 
numerical calculation of Piascek & Toomre (1980), is due to a combination of slow 
diffusion of salt and rapid fluid flow in the finger. It is observed whenever the fingers 
are not too long and the salt difference is large.? 

The analysis presented below treats fingers of finite length for the case where the 
salt diffusion coefficient is much smaller than that of temperature. The zero-order 
model (§ 2) neglects salt diffusion altogether and yields the dependence of temperature 
and vertical velocity on the horizontal coordinate when the horizontal salinity 
distribution is specified as a square wave. The first-order model includes the 
correction to the salinity due to horizontal salt diffusion as the fluid in a finger is 
carried from one reservoir to the other. In contrast, Stern and Schmitt look for the 
convective adjustment of a basic state dominated by horizontal salt diffusion. Thus, 
our starting point is the opposite of theirs. We shall discuss below the circumstances 
in which one or the other of the idealized models is more appropriate. In  Appendix 
A we show that the assumptions in Schmitt’s extension imply restrictions on the 
density ratio that cannot really be satisfied. We also indicate how the present 
idealization can be used in more complete models along the lines of Schmitt or Stern. 
The present system is analysed for a regular fluid and for a Hele-Shaw cell. 

t Stern’s (1969) original analysis of collective instability is based on a model with T = 0 and AkJ 
instead of flz. The treatment that appears in his book (Stern 1976) assumed T + 0 and 8, instead 
of AS. The two treatments appear to be the same because both solutions are baaed on an assumed 
horizontally sinusoidal profile for S. It is evident that in spirit his original model is much closer 
to ours. 
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2. The idealized model 
2.1. Viscous fluid 

The exponential growth that can occur in Stern's basic model is made possible by 
the assumed, infinitely extended, destabilizing salt gradient. Yet fingers are supplied 
with salt and fresh water from the (homogeneous) reservoirs that bound the finger 
zone above and below. They are driven by a salt difference rather than a gradient. 
Stern's model uses gradients because that is the way to obtain a z-independent 
solution and make the problem tractable. It is, however, true that the fingers are 
much taller than they are wide, making the idealization a/& x 0 plausible for the 
perturbed variables. Furthermore, the horizontally averaged temperature is observed 
to have a nearly constant vertical gradient connecting the reservoir values. These 
idealizations are retained in the model proposed here. However, particularly when 
7 is small, the mean salt distribution is more nearly a constant half-way between the 
reservoir values (Linden 1973); the salinity is not much changed from that of the 
upper reservoir in the descending regions nor from that of the lower in ascending ones. 
For these reasons the zero-order form of the model to be discussed below is based 
on a salt difference and a temperature gradient. Independence of z is also assumed 
and to make such a model consistent we must avoid the possibility that a mere salt 
difference will eventually be completely shorted out by horizontal diffusion - thus 
the zero-order model has 7 = 0. 

Any model in which u = v = 0, w = w(x, t ) ,  salinity = So+zflz+s(x,  t ) ,  tempera- 
ture = To+%%+ T(s, t )  and pressure = p ( x ,  t )  (plus a hydrostatic part balancing 
the x-independent density field) is described by the same equations (1) used above. 
In  the present case we have Bz = 0, K ,  = 0 ,  s = +AS in descending fingers and 
s = -+AS in ascending ones, so the salinity equation (1 c )  is trivially satisfied. The 
quantity (' buoyancy-layer scale 7 

(4) 

has the dimensions of a length; we use it as the basic lengthscale to introduce 
dimensionless horizontal coordinates x and y. (This choice is justified later in 
connection with the optimum width given by (l l) .)  We use L'/KT as the time-scale, 

L =  (-7 ~ V K T  

PT, 

and set 
T = 48LZ. 

The relevant dimensionless equations (with p = 0) are 

- 4 8 -  w, Wxz- W,, = 2Q, 
U 

e t + 2 w - e X x - e ~ ,  =o ,  ( 6 b )  

where Q is /3AS/(aLq) in ascending fingers; in descending fingers the sign of Q is 
reversed. 

We shall consider only periodic arrays of salt-fingers, at first in the two-dimensional 
case (everything independent of y),  and assume that the descending fingers are 
exactly like the ascending ones except for reversal of the signs of W and 8. Thus we 
need only consider solutions of (6)  on the interval 0 < x < nb, where nbL is the 
(dimensional) breadth of a finger and b is not yet determined; elsewhere the solution 
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is the odd periodic continuation of that on this interval. Appropriate boundary 
conditions are W = B = 0 at z = 0, xb. (These make W and B continuous and 
continuously differentiable at the finger boundaries.) It is easy to show that all 
solutions of these equations tend to the steady solution as t + 00 ; there is here no 
question of exponentially growing solutions, and the steady solution is stable to all 
perturbations that respect the periodicity and z-independence. 

The time-independent forms of these equations are the thermal analogues of those 
of the Ekman layer - in fact, they describe the ‘buoyancy layer’ (Prandtl 1952), 
forced by the Q-term which represents the weight of the salinity deviation. The two 
steady equations can be combined in the single complex equation 

(W+iB)zz = 2i(W+iB)-2Q. (7) 

The solution that satisfies the boundary conditions is readily determined; on 
0 < x < xb it  is given by the formulae 

sinh x sin (xb - x) + sin x sinh (xb  - x) 
cosh xb + cos xb 

W = Q  9 

8 = Q [  cosh nb + cos xb -11. ( 8 b )  
c o s h ~  cos ( Z ~ - ~ ) + C O S ~  cash ( x b - 2 )  

If the fingers are not much wider than L, the flow is essentially a row of Poiseuille 
flows, alternately up and down (figure 1). For wide fingers (large b) this structure 
becomes a row of antisymmetric buoyancy boundary layers on the interfaces 
(figure 2) between the regions of different salinity; these boundary layers have the 
characteristic (dimensional) scale L. It will be noted that for the case displayed in 
figure 2 (a) the vertical velocity is much reduced at the centre of the finger. In  fact, 
for any value of b > 2, there is a region of downward flow in 0 < x < xb. While this 
is a correct solution of the stated mathematical problem, it is not consistent with the 
underlying physical picture in which regions of downward flow should always have 
the salinity of the upper reservoir. Thus the physically relevant range of b is 
0 < b < 2. If one imagined that b was somehow slowly increased (e.g. by increasing z) in an array of fingers with fixed breadth, then such reversed-flow regions could 
develop - but they would eventually bring down (or up) fluid of the other salinity, 
thus effectively splitting apart the ‘too wide’ finger. In experiments in a Hele-Shaw 
cell Taylor & Veronis (1985) observed that wide fingers, exposed abruptly to 
conditions favouring smaller width, become unstable to smaller scale, slanted 
disturbances which evolve to form a patfern of narrower fingers. 

It is clear from the above that the problem also has steady solutions other than 
the one just given, in which not all fingers are alike. For instance we could have an 
odd periodic array in which each half-period consisted of two fingers in one direction 
separated by a thinner finger in the other. (To calculate such solutions one should, 
of course, use continuity and smoothness at the interfaces rather than W = 8 = 0.) 
There are also many other possibilities, including aperiodic structures. The tempta- 
tion to investigate such ‘spatially chaotic ’ solutions will, however, be resisted here. 
Solutions that are periodic in two horizontal dimensions will be discussed briefly 
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FIQURE 1. (a) W / Q  and ( b )  e /Q 218. z for an ascending finger with a width of L, (=1.7L), 
corresponding to maximum buoyancy flux. 

below; in a different context D. Loper (private communication) has calculated an 
analogous axisymmetric solution as a model of an isolated plume. 

Horizontally averaged, convective heat (FT) and salt (F8) fluxes are defined (in 
dimensional form) by i rnbL 

wT dx, 

1 nbL 
F=-J nbL ws dx, 
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RQURE 2. (a) W/Q and (b)  O/Q v8. z for aacending finger with a width of 3Lm. The vertical velocity 
peaks in the boundary layers and has a lower value at the centre of this (too-wide) finger. 

X 

end the buoyancy flux B is aFT -pF8. (The conductive heat flux - KT 

here.) These can be shown to be given by the formulae 
is omitted 

3 sinhnb-sinnb 1 sinnb sinhnb 
8nb coshxb+cosnb-Z (coshnb+~osnb)~ 

FT = - u T E Q  

a ,(I sinhnb-sinnb 
$ 2xb coehnb+cosnb 

F * = - - K  TQ 
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/ \ Buoyancyflux 

1 I n  b 

FIGURE 3. Buoyancy flux and flux ratio of heat to salt as functions of b (nb is the width of a 
two-dimensional finger). 

The buoyancy flux as a function of b is shown in figure 3; it has a maximum of 
B, = 0 . 1 3 5 ~ ~ ~  CQ2 at b, = 0.542, which corresponds to a finger width 

or a little under two buoyancy-layer thicknesses.? 
The present theory does not in itself specify a value of b appropriate for comparison 

with experiment (except that it should be < 2). Choosing b, as the preferred scale 
has a certain physical and thermodynamic appeal but it has not been justified 
rigorously. It should be noted that a horizontal scale is not determined by Stern’s 
idealization either ; one is obtained only by adding some additional considerations 
such as those given by Stern (1976) or Schmitt (1979a). A detailed discussion of the 
issue is warranted but in order not to interrupt the flow of the present development, 
the discussion is relegated to Appendix A. Here, we point out only that Schmitt’s 
mechanistic model implies parametric restrictions that cannot be satisfied and that 
the present model appears to be a better approximation for the heaha l t  system. 

Profiles of W and 6 for fingers of width L, are shown in figure 1. The corresponding 
convective fluxes are given by 

aF, = -O.336Bm, PF8 = 1.336Bm. (12) 

t When a stably stratified fluid is subjected to thermal forcing a t  the sides, buoyancy layers 
provide the transition between the imposed boundary values and the interior fluid. In the present 
case, rising columns transport cold fluid upward and sinking columns transport warm fluid 
downward. The buoyancy layers on either side of the finger boundary serve to smooth out these 
(stabilizing) thermal anomalies, enabling the fluid to release the potential energy of the salinity 
more efficiently when the width is given by (1 1) than when the finger is wider. Thinner fingers are 
too heavily damped by viscosity. 
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Thus the flux ratio, UFT//3Fs, is 0.251, effectively the same as Sterm's value of 0.25 
obtained by a totally different argument. This ratio is also shown as a function of 
b in figure 3. It varies rather rapidly near the width L,, but is never more than 0.8. 

Laboratory measurements of aFT//3Fs across an interface (initially two layers) vary 
considerably because of the uncertainty about how much heat is lost through the 
sidewalls during an experiment. For aAT//3AS > 2 Turner (1967) determined 
aFT//3F8 to be 0.56; Linden (1971) obtained a value of 0.12 (with heat-sugar 
experiments) ; and Schmitt (1979 b)  found that aFT/PFs decreased from 0.68 for 
aAT//3AS < 2.5 to 0.33 for aAT/PAS > 6.  

Salt fingers (really 'sheets ') somewhat like those envisioned above have been 
observed when a shear is imposed across the finger zone, but otherwise fingers are 
normally three-dimensional with a roughly square planform (cf. Turner 1973, figures 
8.18 and 8.19). A solution to the steady form of (6)  with a checkerboard pattern of 
up and down square fingers can be found, though it is not described by formulae as 
simple as those in the two-dimensional case. Taking a typical ascending finger to 
be in 0 < x < xb, 0 < y < xb, one representation of the solution is by a double Fourier 
series. 

nx my 
W+iB = 2Q E A,, sin- sin- 

n, m b b  

in which the coefficients are found to be 

16 b2 
A,, = -- 

x2nm n2m2 + 2ib2 

if n and m are both odd positive integers, and A,, = 0 otherwise. Although this 
representation is not very suitable for numerical evaluation because of its rather slow 
convergence, one readily finds from it the following expressions for the convective 
fluxes : 

n2 + mz ' - 256b6 
CCFT = -UKT T, Q2 - 

n4 ,, [(n2 + m2)2 + 4b4l2nZmz ' 
&d 

64b2 n2 + m2 
-PFs= U K T q Q z ~  ,. , [(n2+m2)2+4b4] n2m2 

odd 

(These series are also somewhat slowly convergent. Numerical evaluation can be 
facilitated by the following device, illustrated for the case of the series in (15b) (all 
sums are for n, m odd): 

1 
n2m2(n2+m2) [(nz+rn2)z+ 4b4] 

- 4b4 
1 - n2 +ma ' [(n2 + + 4b4] n2m2 - ' (n2 + m2) n2m2 

The second series on the right converges rapidly enough for fairly easy direct 
evaluation if b is not too large - the difference between the sums up to n = m = 11 
and those up to 15 are only even at b = 3. The first sum on the right can be 
transformed to  

Z g ( 2 - w )  1 1  1 = &x4+x2-X-- 1 x  tenh+m 
n4 4n 

x6 1 1 
768 ns 

X 2 +in E - (1 - tanh inn). =-- 
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FIQURE 4. Same aa figure 3 but for fingers with a square cross-section. Here, nb is the length 
of one edge of the square finger. 

The last sum converges very rapidly (the third term, n = 5, is about 10-lo) and the 
other sum is easily seen to be 31[(5)/(32) (Riemann zeta function, which is tabulated).) 

The buoyancy flux B = aFT-bFs and the flux ratio laFT/bF,l are shown for this 
case in figure 4. The vertical velocity at the fhger centre was also computed (using 
a similar device to improve convergence) and reverse flow was found to set in when 
b exceeds 1.485. The maximum buoyancy flux is 0 . 1 1 7 4 a ~ , c Q ~ ,  obtained at 
b = 0.7844, which corresponds to a finger edge of about 2.46L. The flux ratio at this 
point is 0.256. 

2.2. Fingers in  a Hele-Shaw cell 
When the fluid is contained in a Hele-Shaw cell, i.e. a narrow gap between two vertical 
plates, the conservation equations (1 b, c) for temperature and salinity are unaltered, 
but the vertical momentum equation takes the form 

wt+pz-g(aT-bs)+pw = 0, (16) 

wherep = 12v/d2 and d is the gap width. The analysis analogous to Stern's once again 
leads to (3) but with CT, RT and R, replaced by u = p / ( k 2 K T ) ,  RT = g a q / @ K T  k2) and 

In the model with K, = 0, s is taken as &-+AS in adjacent fingers. The buoyancy- 
layer scale, now defined by L = (pKT/gaTz)t, is used to  make x dimensionless and 
L 2 / ~ ,  is the timescale. Setting w = K~ W / L ,  T = L c 0 ,  leads to the equations 

R8 = gb'Z/@KT k2)' 

u-lwt-e+ w = -Q,  (174  

et+w-e, ,=o, (17b) 

where Q is bASl(2aT L) in ascending fingers and changes sign in descending fingers. 
As t+ 00 the solution tends to that of the steady equations 

W = 0-Q, Ox, = W. (18a, b) 
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W / Q  and (b)  O/Q v8. z for an ascending finger in Hele-Shaw 
is twice the buoyancy-layer thickness. 

cell. The finger width 

The solution is odd and periodic and on the interval 0 < 2 < a it takes the form 

The temperature field is continuous and continuously differentiable, but the Hele- 
Shaw idealization admits a discontinuity in W at the interface between fingers where 
Iw achieves its maximum value of Q. Horizontal profiles of W/Q and S/Q are 
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FIGURE 6. (a) W / Q  and ( b )  e/Q us. x for an ascending finger in a Hele-Shaw cell. The finger width 
is six times the buoyancy-layer thickness. 

shown in figures 5 and 6 for fingers with widths of two and six buoyancy layers 
respectively . 

Heat, salt and buoyancy fluxes are calculated as before. Salt flux achieves its 
maximum for infinitesimally thin fingers because the horizontally averaged vertical 
velocity is at its maximum there. Heat flux goes to zero for very thin fingers. 
Therefore, the buoyancy flux also achieves its maximum in this limit. Figure 7 shows 
the buoyancy flux and the flux ratio as (monotonic) functions of the finger width. 

(A boundary layer with the scale of the gap width would smooth out the 



Salt-jinger zone 13 

Buoyancy flux 
0.5 

1 2 3 4 

FIGURE 7. Buoyancy flux and flux ratio of heat to salt as functions of h g e r  width in a 
Hele-Shaw cell. Units on the abscissa correspond to buoyancy-layer thicknesses. 

discontinuity in vertical velocity. The salt-diffusion correction of the next section 
would have the same effect, if the corrected salinity were used as the driving term.) 

There are no laboratory measurements of the fluxes in a Hele-Shaw experiment. 
The physical arrangement is not suitable for a heat-salt experiment starting with 
two layers because of the heat losses to the walls of the Hele-Shaw cell. However, 
an experiment with two solutes is feasible. Taylor & Veronis (1985) have reported 
preliminary results for a sugar-salt experiment but the ratio of the diffusivities is 
about 1/3 which is rather large for the present theory (7 +. 0) to apply. Experimentally 
usable solutes with an appropriately small value of 7 are available. 

2.3. Vertical variation of finger width 
As salt fingers penetrate into the reservoirs above and below the interface, the 
stabilizing mean temperature gradient near the interface decreases with time. The 
present theory is based on the assumption that the dynamics of the fingers can be 
analysed by steady-state balances using a local (in time) value of c. However, even 
with that assumption, fingers of finite length will be associated with a stabilizing 
temperature gradient that is larger near mid-depth than it is near the reservoirs. 

A qualitative description of the structure of the fingers can be realized by allowing 
q to vary parametrically with z in the solutions that have been derived for w and 
T. If has a maximum value at z = 0 and tends to a constant value a t  large 
(compared to the cell width) distance (figure 8a)  then the buoyancy-layer width will 
be small a t  z = 0 and large at large 121. Accordingly, the vertical flow in an array of 
equally spaced fingers will occur across the entire cell at large IzI but near z = 0 it 
will be confined to (buoyancy) boundary layers near the vertical interfaces between 
cells. That means that there will be regions near the middle of each finger (shown 
shaded in figure 8 b )  with very little or no vertical motion. 

The constant value of q in the reservoirs at large IzI in the foregoing description 
determines the broad cell width. In  an experiment with two homogeneous reservoirs 

vanishes at large IzI, but the width of evolving fingers seems to be controlled by 
the value of c near the top and bottom edges of the finger zone, which is what the 
asymptotically constant is meant to represent. 
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FIGURE 8. (a) Mean temperature ws. z for a system with maximum at z = 0 and asymptotically 
constant at  large (z). (b) A schematic picture of flow in ascending and descanding fingers. The 
large value of $ near z = 0 gives rise to thinner buoyancy layers to which the vertical flow is 
confined. The fluid is essentially quiescent in the shaded regions. 

3. Correction for salt diffusion 
3.1 . Viscous juid 

The model solution given above can be expected to give a reasonable description of 
the flow in a finger zone connecting two reservoirs when the actual finite length of 
the zone is large compared to the fingers but not so large that horizontal diffusion 
of salt upsets the hypothesis of constant salinity in each finger. Of course, horizontal 
salt diffusion will develop some kind of a boundary layer along the interfaces between 
ascending and descending fingers, but assuming that the latter are not too long, this 
boundary layer (for small 7 )  should still be thin compared to the buoyancy layer. 

Near the interface between adjacent fingers the vertical velocity varies linearly 
with x (figure 1). If the vertical coordinate is scaled by h and the horizontal coordinate 
by H, then with 

(20) 
cosbx+ cosh bx 4 ( - y  aT h ~ V K ~  

sin bx + sinh bn PAS gaT, 
H9= 

the salinity-boundary-layer equation is free of parameters and becomes 

XS, = s,, (21) 

for the region 0 < z < 1 and - 00 < x < 00. Both S and 8, are continuous on 
0 < z < 1 as z+O from right and left. Furthermore, 

S = +  a t z  = 1  forx<O a n d f o r O < z < l  as x+--co, 

S = - t  a t z  = O  fo rx>O a n d f o r O < z < l  as X + C O . ~  

These somewhat unusual conditions are seen to be appropriate both by consideration 
of the physics of the salinity boundary layer, and by noticing the mathematical 

1 (22) 
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structure: the characteristics of the parabolic equation (21) are directed upward for 
x > 0, but downward for x < 0. 

To solve this problem we consider first a simpler version of i t :  the same equation 
(21)but inz>0,z>O,withS=Oonz=OandS=f(z)onx=0.  Invarianceofthe 
equation under a scaling transformation leaving x3/2 fixed suggests the existence of 
similarity solutions depending on a power of this variable. The latter are readily found 
and the one that satisfies the condition S = 0 on z = 0 for x > 0 is 

m 

The value of So on x = 0 for z > 0 is the constant r(i)/$. Thus So, or a multiple of 
it, solves the problem in the special case of a constant forf(z). The case of a general 
f(z) can be treated by taking the Laplace transform in z and using the above special 
solution to help in the evaluation of the inverse transform. The result is 

which can readily be checked directly. 
By similar methods the same problem with S =f(z) replaced by S, = g(z)  can be 

solved; from this the relation between f and g corresponding to the same solution S 
can be determined. It is 

where In corresponds to the Riemann-Liouville fractional integral 

l p z  

We now return to our original salinity-boundary-layer problem. Let f(z) = S(0, z )  
and g(z )  = S,(O, z ) ,  0 < z < 1. These are related by (25) but are otherwise unknown. 
However, they must be approached from both positive and negative x. The function 
S++ vanishes on z = 0 and isf(z)+i on x = 0, so it can be related to g(z)  by (25). 
Similarly, S( -2, 1 -z)+ vanishes on z = 1, is f(1 -z)+ on x = 0, and has x- 
derivative - g( 1 - z )  on x = 0. A second use of (25) provides another relation between 
f and g, and elimination off between these two gives the following integral equation 
for g(z )  : 

(26) Jl lz - 51-4 g(g) d[ = - 33 r(i). 

Absorbing the constant into g (now written aa G) yields. 

the solution of which (see Appendix B) is 

[z( 1 - z)]4 
Q(z)  = 

2x * 

The more general equation with P(z) on the right-hand side of (27) and any exponent 
between - 1 and 0 has been solved by L. N. Howard (1985, unpublished manuscript) 
in a related way, which gives a representation of the solution more convenient for 
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1 0- 
-0.5 0.5 

S/ AS - - 2  - 1  0 1 2 

FIQURE 9. (a) Salinity correction due to salt diffusion plotted as function of 2 at x = 0, the boundary 
between fingers. (a) Contours of the salinity correction in the boundary layers surrounding the 
boundary between an ascending finger on the right and a descending finger on the left. Units of 
x in terms of H in equation (20). 

specific cases than the representation by complex integrals presented by Carleman 
(1922). 

From (28) and the preceding formulae the whole structure of the salinity boundary 
layer can be determined. The simplest procedure is to obtainf(z) from (25) and to 
integrate (21 ) numerically using the boundary conditions (22) for each half-strip. 

Figure 9 (a) exhibits the diffusive correction for S(z)  at the interface between rising 
fluid on the right and descending fluid on the left. The distribution of salinity in the 
boundary layers surrounding the interface at x = 0 is shown in figure 9 (b). Near the 
top of the zone, salt diffusion from the descending cell shifts the S = 0 contour to 
the right; the corresponding effect of fresh water near the bottom shifts it to the left. 
The overall result is that diffusion broadens the fingers at the incoming level and 
tapers them to a smaller width as they move through the finger zone. 

The diffusive correction has been treated here as a boundary -layer correction with 
S = +a at large distance from the interface. Thus, the analysis is applicable provided 
that the correction penetrates less than half the width of a finger. Since the 
x-coordinate has been scaled by H in (20), i.e. xdim = Hx, horizontal penetration is 
appropriately restricted if Hx < ahm, from (1 1). Therefore 

sin 2 + sinh d 0.85 
cos 2 + cosh 2 (rRp)f 

0.94 
(7Rp)f ’ 

X <  z- (29) 

where Rp = a z  h//3AS. As expected, (29) is less restrictive (the boundary layer is thin) 
when the system is strongly forced (small Rp) or when salt diffusion is weak (small 7 ) .  

In the distribution shown in figure 9 (b) deepest penetration of the correction occurs 
at the top right and bottom left. The salinity is within 1 Yo of the asymptotic values 
of &!j for 1x1 = 3.0. Therefore, the analysis is applicable for 1 < Rp < (327)-l. Values 
of Rp for typical laboratory heat-salt experiments fall into this range, as does the 
ratio of heat and salt differences in natural oceanic conditions. However, for 
salt-sugar experiments (32~)-l  < 1 and the criterion is not satisfied in the regions 
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of greatest penetration of the correction, though it is approximately satisfied at 
half-depth. 

3.2. Hele-Shaw experiments 
The analysis parallels that in the previous section though there are differences in 
detail. The dimensional vertical velocity has a constant value, &g/?A8/2p, on the two 
sides of the interface and the horizontal coordinate is scaled by H = (2h~,p /g /?AS)f .  
The salt diffusion equation takes the simpler form, S, = Sxx, in each half-strip with 
the same boundary conditions as before. The analysis for the sub-problems is easily 
carried out with the aid of a Laplace transform in z. The equations relating f to g 
are 

leading to the final equation 

the solution of which is 
- [z(  1 - 43-1 

(2n)f g(z) = 

The vertical distribution of S at x = 0 and contours of S ( x ,  z )  are qualitatively 

With the present scaling and a finger width of two buoyancy layers, the theory 
similar to those of figure 9. 

is applicable for 

Since the asymptotic value of S is achieved at about x = 3.7, the restriction on Rp 
is 1 < Rp < (14~)-'. More feasible Hele-Shaw experiments are with two solutes (no 
heat) and the ratio of the diffusivities must be considerably smaller than that of sugar 
to salt (1 /3 ) .  Easily available solutes, e.g. salt and starch, satisfy the restriction. 

x < (1.07Rp)-i. (32) 

4. Discussion 
The present model may be helpful in describing the quasi-steady state of salt fingers 
that have evolved from an initially two-layer configuration, as might be expected 
to occur at an interface of an intruding water mass with T and S properties different 
from those of the ambient water. Whether in the laboratory or in nature, the 
evolution takes place via fingers that both lengthen and broaden and during this 
period the salinity anomaly is essentially undiminished from one end of the finger 
to the other. That is observed to happen in experiments with Rp > 1, i.e. a relatively 
large salinity difference (Turner 1973, figure 8.8), and in the numerical simulation 
of salt fingers by Piascek & Toomre (1980). Our analysis is based on the assumption 
that the fingers are long and essentially steady. 

The width of the fingers is controlled by the buoyancy layer, which serves to 
redistribute the stabilizing temperature field so that the potential energy of the salt 
field can be released most efficiently. Stern (1960) came to the same conclusion in 
selecting the optimal wavelength for infinitely longer fingers. However, in our 
analysis the structure of the temperature and velocity fields is also determined by the 
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buoyancy layer. The fist-order correction to the salinity field is directly related to 
the finite length of the fingers. 

If fingers of a given width are sufficiently long, the diffusive corrections from the 
two sides of a finger will come together and salt diffusion will be important across 
the entire finger. In that case Stern’s sinusoidal solution should be applicable over 
a depth range centred around mid-depth. However, the width of the fingers and the 
buoyancy flux will be determined by a modified form of the present solution which 
will be valid near the ends of the finger zone. Thus, the present solution should resolve 
the indeterminacy of the sinusoidal finger solution. 

Another possibility is that fingers will become wider as they lengthen. That is what 
one would expect of fingers that evolve from a two-layer configuration since the mean 
temperature gradient diminishes during the evolution. If this dynamic increase of 
horizontal scales exceeds the lateral penetration of the diffusive correction, there will 
always be a portion near the middle of the finger in which the salinity anomaly is 
undiminished, and the present solution will be valid over the entire length of the 
finger. 

We have assumed that a steady model can be used to determine the dynamical 
balances even though the system that we envisage is globally transient. That 
assumption may not be valid. There is certainly a transient period near the beginning 
of a two-layer experiment and we do not know how long the fingers must be before 
a quasi-steady treatment is applicable. The conclusion that we drew from the analysis 
of the salt-sugar Hele-Shaw experiment is that the diffusive boundary layers merge. 
Yet in experiments with large reservoir values of A S  and AT, exiting fingers transport 
sugar anomalies that appear to be undiminished. The quasi-steady assumption may 
not be applicable for that case. 

We have ignored the transition region between the finger zone and the reservoir 
where the temperature gradient is smaller than that of the finger zone and would 
induce wider fingers. We do not know whether that feature can be included without 
incorporating time dependence. 

We have also ignored the effect of vertical salt diffusion where the fingers leave 
the finger zone and encounter a salinity anomaly of the opposite sign. Although that 
probably involves only a boundary-layer correction for the exiting finger, it may 
affect the incoming fingers on either side and alter the conditions where those Sngers 
originate. The same phenomenon at the other end of the finger zone implies that all 
fingers are affected in the region of origin. We need more information about the 
conditions that prevail at the boundaries of the finger zone. Because of the small scale 
in question, help from laboratory experiments would require measurements much 
more precise than any that have been made up to the present time. Computer 
simulations may help but they, too, will require a scale resolution that makes the 
problem difficult, at best. 
Our hope is that once we have understood the detailed behaviour near the 

boundaries of the finger zone, the significant effects in those regions can be 
approximated so that a more comprehensive model for the evolution of the finger 
zone can be developed. We may then be in a position to deal with the important 
problem of how fingers contribute to the formation of mixed layers (reservoirs) above 
and below. 

This research was supported by NSF Grant OCE-8410154 and by ONR Grant 
N-00014-85-K-0071. It was begun during the 1984 GFD program at the Woods 
Hole Oceanographic Institution. Some of the calculations were carried out when 
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Appendix A. Considerations leading to the selection of a horizontal scale 
In  Stern’s idealization, one argument for choosing the horizontal scale is to require 

the solution to be time independent. However, in that case some further consideration 
is also needed to fix the amplitude and in fact the other solutions which grow 
exponentially would seem to deserve further notice. 

The determination of horizontal scale in connection with Stern’s idealization - or 
the present one - is an issue somewhat different from that in some stability problems. 
In the latter, the linearization predicts exponential growth, but this is known from 
theory or observation to be ultimately limited by nonlinear effects; in such cases the 
wavelength of maximum growth rate is often (very plausibly) suggested as a good 
estimate of the horizontal scale that should be expected to occur in an experiment. 
However, these idealized salt-finger models are not linear stability problems, but 
families of exact solutions. In  Stern’s idealization, the exponentially growing 
solutions are not limited by nonlinearity, and in ours there are no exponentially 
growing solutions at all. 

The determination of the horizontal scale (if it is indeed determined) comes only 
when the idealization is used as a part of some more complete picture. For instance, 
in the rather attractive ‘interface model’ of Schmitt (1979a) the scale is determined 
by supposing the salt-finger zone to have evolved from an initial state in which 
uniform temperature and salinity gradients exist in a finite layer between two deep 
homogeneous layers. This layer is supposed to become filled with salt fingers, 
described by Stern’s idealization (as if the gradient layer were infinite in vertical 
extent) using the scale that gives maximum growth rate for the initial gradients ; the 
scale is then supposed to remain fixed throughout the evolution. 

The evolution process is not described in detail, but Schmitt argues that it can be 
expected to reduce the mean salt gradient inside the layer as the amplitude of the 
salt fingers increases (with fairly rapid changes in salinity appearing at the edges of 
the layer), and come to an end when gZ has been sufficiently reduced that the original 
horizontal scale corresponds to the steady solutions of Stern’s idealization. This 
reasoning is rather similar to the description of a linear instability ultimately limited 
by nonlinearity, but the circumstances are not really the same. Here, the limiting 
is a consequence of the finite thickness, which makes possible the reduction of the 
internal mean salt gradient. That is not a part of Stern’s idealized salt-finger model, 
but Schmitt’s idea of using Stern’s model as a description at the start of the evolution 
process seems entirely appropriate and the selection of the scale of maximum growth 
rate seems very reasonable. Initially, the vertical velocity is small and horizontal 
diffusion could generate the sinusoidal profile a relatively short distance into the 
finger. 

He also uses Stern’s model as a description of the ha1  state; there is a minor 
difficulty in doing so, for without a detailed description of the evolution it is not 
entirely clear which amplitude of the steady solution should be expected in the final 
state. Schmitt’s suggestion - also physically plausible - is that the amplitude should 
be such that the extremal salinity in the finger is about the same as that of the 
homogeneous region from which it comes. But in the final state it is at least 
conceivable that the vertical velocity may be so large that very little horizontal 
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diffusion can occur before a fluid parcel has completely traversed the salt-finger layer. 
To assess the situation we give the following argument. 

Suppose that the layer of initially uniform gradients c, gz, is of thickness h, and 
that the salinity difference across it is Ail. The horizontal wavenumber k is selected, 
as suggested by Schmitt, to be that corresponding to the maximum growth rate for 
the initial gradient. After the evolution the mean salinity gradient has been reduced 
to a value &, which makes k correspond to a steady solution, and from (3a) is given 

Using this and the equations of Stern’s idealization in the steady case ((2), with 
h = 0 )  one readily finds 

w = -  k2KT B 
k4VK~/g + U E  

We now set s = +AS, and on introducing the dimensionless breadth b = l/(kL) we get 

Now Stern’s idealization can be regarded as appropriate in this final state provided 
that the residence time h/lwl in a finger is long enough that the corresponding 
horizontal diffusion scale X ( K ~  h/lwl)i is large compared with the finger breadth XbL, 
i.e. provided h % b2121wl/Ks. Using the above formula for IwI this condition becomes 

1 BAS 2b4 h % - T -  
7 aTz 1+4b4’ 

which, introducing the density ratio Rp = ahq//lAS, can be written 

2b4 
7Rp % ~ 

1 +4b4 ’ 

For salt-finger problems Rp must lie in the range l - ~ - l ,  so the left side is at most 
1, and for small 7 it is considerably less than 1 unless the salt driving is very weak. 
To estimate the right-hand side we need to know the value of b corresponding to the 
maximum growth rate for the initial state. Schmitt (1979~)  has given values of a 
dimensionless wavenumber M, which in our notation is equal to l/(b.\/2), for the cases 
c = 7 , 7 = & , ( 1  < R p < 1 0 0 ) a n d a = 1 0 0 0 , ~ = ~ ( 1 < R p < 3 ) .  

In both cases M < 1 which means that 4b4 > 1 and so the right-hand side of (A 5 )  
is at least a. Thus the condition (A 5 )  for the appropriateness of Stern’s idealization 
in the final state can be only marginally satisfied in the most favourable case and 
is not satisfied if there is strong salt driving (Rp near 1). It can be shown that 

[ 1 + 5 ~ - $ ~ + ( 4 + ~ )  (E+$z~$], 
c+7 

4b4 2 - 
r(1-7)  

where the equality holds for maximum growth rate, and E: = c7/(c+7), from which 
it is easily seen that 4b4 2 1 for all c and 7 < 1, not just for the values calculated 
by Schmitt. Indeed, it is possible to show that 7Rp < 4b4/( 1 +4b4) for all r, all 7 < 1, 
and all Rp on (1, 1 / ~ ) ,  so the condition (A 5 )  is never really satisfied. 

When the strong inequality in (A 5 )  is reversed, diffusion plays little role in the 
salt fingers; this is exactly the situation for which the idealization presented here is 
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appropriate, and it can be used instead of Stern's idealization to make a model along 
the lines of Schmitt's for cases of small 7 and 7Rp sufficiently small. The basic physical 
picture is the same, and the horizontal scale is determined as suggested by Schmitt. 
But the final state is approximated by the idealization described here, rather than 
by Stern's. The main quantitative results are very little different from those 
calculated by Schmitt, because the amplitude of the salt perturbation assumed by 
him is the same as that of the present model and the profiles are not greatly different 
unless b turns out to be appreciably larger than 1, which is probably only the case 
when 7Rp is near 1. (If it should turn out that b exceeded 2, our model would suggest 
that the fingers would be split so that the horizontal scale would not in fact be 
determined by Schmitt's condition - but this seems to be rarely if ever the case.) The 
main qualitative difference is perhaps the square-wave profile of salt in the finger, 
together with the fact that the description of the final state can now be justified. It 
seems to us also that the explicit recognition in the idealization of the finite height 
of the finger zone, which comes in through the driving by AS rather than by gZ, makes 
the description more physically satisfactory. Of course the calculations we give here 
are for 7 = 0, and are of doubtful applicability when 7 is as large as 5 -the 
sugar-salt case. The salinity-boundary-layer approach discussed in Q 3 could be 
utilized to calculate some correction to the fluxes, etc. for finite 7.  However, if 7 is 
as large as ), then either one should use Stern's idealization (even though it is not really 
justified!) in the manner of Schmitt, if 7Rp is near 1, or, if 7Rp 4 1, one should 
recognize that neither the thermal nor the salinity fields will be much affected by 
horizontal diffusion, and try to take that into account. 

The determination of a horizontal scale by Schmitt's argument may not be 
appropriate for all fields of salt fingers - in particular the interesting case of evolution 
from an initial temperature and salinity jump seems rather different - and the finger 
width in a particular salt-finger zone may depend on how it was actually established. 
We hope that the present idealized model may also be useful as a part of other more 
complete theories, which may fix the horizontal scale on some other basis. For given 
values of AS and the fluid would release the potential energy available in the 
salinity field most efficiently by selecting the finger width that leads to a maximum 
of the buoyancy flux B. This is a plausible criterion for choosing an appropriate scale, 
and was used, with some other considerations, in the model of Stern (1976) mentioned 
above, to determine the parameters of a particular steady solution of (2). This 
criterion could also be used to fix b in the present model. 

Appendix B 
To evaluate 

change the notation by setting 

to obtain 

where we assume la1 < f to ensure the existence of the integral for all continuous F. 
We now show that when F(w) = 1, the integral in (B 3) is a constant C for lzl < 1. 
Thus F = 1/17 solves (B 3). C is evaluated in the following. 
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Take P(w) = 1 and change to the variable u defined by 

z+u 
l + Z U '  

w=- 

which makes w = - 1 ,z ,  1 correspond to  u = - 1,0, 1 respectively. Then 

( 1 - z"( 1 - u2) 

(1 - z2)i-a 

u( 1 - 22) (1-22)  

(1 + zu)2 (l+zu) (1 + zu)2 
1-w2= , w - z =  , dw= du 

1 (1-u2)a-tlul-2a 
du. I -1 (1-zu) 

and this gives 

The integral I in (B 5 )  can be rewritten as 

du du du 
l+zu 1-zu 1-zeu2 

j ...-+J ... - = 2 J  ...- 

Using 6 = z2 and v = u2 as variables leads to 

Than 

In view of (B 5 )  this shows that the integral on the left in (B 3) is indeed a constant 
when F = 1 and (21 < 1. (We have tacitly assumed (21 < 1 in using (B 4); the integral 
is not constant outside this interval.) Since I (0 )  is a beta function, the constant C 
is easily evaluated. For a viscous fluid the value of B in (B 1) is and the constant 
C in (B 8) is 2n. For a Hele-Shew cell /3 = 4 and C is n42. 
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